Skip to main content
Log in

Facile Tuning of Metal/Oxide Interface in Hollow Nanoreactor Affecting Catalytic Activity and Selectivity

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

To develop cutting-edge catalysts with excellent catalytic performance, novel synthetic techniques are required. In particular, hollow oxide nanoparticles are attracting much attention as advantageous nanoreactors in which the interior cavity can be selectively functionalized with catalytically active metal nanoparticles and various oxide supports. In this report, we demonstrate that the metal/oxide interface inside a hollow nanoparticle can be changed from (Mn3O4/Pt NPs)@h-SiO2 to [Mn3O4(0.5)/CeO2(0.5)/Pt NPs]@h-SiO2 via the galvanic replacement reaction, leading to improved catalytic activity and selectivity. The change in selective methanol oxidation is determined by the CO oxidation and OH formation reactions at the metal/oxide interface. This work implies that modification of the metal/oxide interface in a hollow oxide nanosphere is an effective way to improve catalytic performance for a desired product in heterogeneous catalysis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Somorjai GA, Frei H, Park JY (2009) J Am Chem Soc 131:16589

    Article  CAS  PubMed  Google Scholar 

  2. An K, Somorjai GA (2015) Catal Lett 145:233

    Article  CAS  Google Scholar 

  3. Song H (2015) Acc Chem Res 48:491

    Article  CAS  PubMed  Google Scholar 

  4. Lee J, Kim SM, Lee IS (2014) Nano Today 9:631

    Article  CAS  Google Scholar 

  5. Park JY, Baker LR, Somorjai GA (2015) Chem Rev 115:2781

    Article  CAS  PubMed  Google Scholar 

  6. Kattel S, Liu P, Chen JG (2017) J Am Chem Soc 139:9739

    Article  CAS  PubMed  Google Scholar 

  7. Schwab G, Koller K (1968) J Am Chem Soc 90:3078

    Article  CAS  Google Scholar 

  8. Tauster S, Fung S, Garten RL (1978) J Am Chem Soc 100:170

    Article  CAS  Google Scholar 

  9. Tauster S, Fung S, Baker R, Horsley J (1981) Science 211:1121

    Article  CAS  PubMed  Google Scholar 

  10. Park JY, Kim SM, Lee H, Nedrygailov II (2015) Acc Chem Res 48:2475

    Article  CAS  PubMed  Google Scholar 

  11. Lykhach Y, Kozlov SM, Skála T, Tovt A, Stetsovych V, Tsud N, Dvořák F, Johánek V, Neitzel A, Mysliveček J (2016) Nat Mater 15:284

    Article  CAS  PubMed  Google Scholar 

  12. Cargnello M, Doan-Nguyen VV, Gordon TR, Diaz RE, Stach EA, Gorte RJ, Fornasiero P, Murray CB (2013) Science 341:771

    Article  CAS  PubMed  Google Scholar 

  13. Mehta P, Greeley J, Delgass WN, Schneider WF (2017) ACS Catal 7:4707

    Article  CAS  Google Scholar 

  14. Du X, Zhang D, Shi L, Gao R, Zhang J (2012) J Phys Chem C 116:10009

    Article  CAS  Google Scholar 

  15. Yoon S, Oh K, Liu F, Seo JH, Somorjai GA, Lee JH, An K (2018) ACS Catal 8:5391

    Article  CAS  Google Scholar 

  16. Ro I, Liu Y, Ball MR, Jackson DH, Chada JP, Sener C, Kuech TF, Madon RJ, Huber GW, Dumesic JA (2016) ACS Catal 6:7040

    Article  CAS  Google Scholar 

  17. Zhao G, Yang F, Chen Z, Liu Q, Ji Y, Zhang Y, Niu Z, Mao J, Bao X, Hu P (2017) Nat Commun 8:14039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Park D, Kim SM, Kim SH, Yun JY, Park JY (2014) Appl Catal A 480:25

    Article  CAS  Google Scholar 

  19. Joo SH, Park JY, Tsung C-K, Yamada Y, Yang P, Somorjai GA (2009) Nat Mater 8:126

    Article  CAS  PubMed  Google Scholar 

  20. Kim SM, Jeon M, Kim KW, Park J, Lee IS (2013) J Am Chem Soc 135:15714

    Article  CAS  PubMed  Google Scholar 

  21. Lee D-G, Kim SM, Kim SM, Lee SW, Park JY, An K, Lee IS (2016) Chem Mater 28:9049

    Article  CAS  Google Scholar 

  22. Chen Z, Cui Z-M, Niu F, Jiang L, Song W-G (2010) Chem Commun 46:6524

    Article  CAS  Google Scholar 

  23. Yu Y, Cao CY, Chen Z, Liu H, Li P, Dou ZF, Song WG (2013) Chem Commun 49:3116

    Article  CAS  Google Scholar 

  24. Na HB, Lee JH, An K, Park YI, Park M, Lee IS, Nam DH, Kim ST, Kim SH, Kim SW (2007) Angew Chem 119:5493

    Article  Google Scholar 

  25. Anisur RM, Shin J, Choi HH, Yeo KM, Kang EJ, Lee IS (2010) J Mater Chem 20:10615

    Article  CAS  Google Scholar 

  26. Oh S, Qadir K, Park JY (2017) Catal Lett 147:39

    Article  CAS  Google Scholar 

  27. Oh MH, Yu T, Yu S-H, Lim B, Ko K-T, Willinger M-G, Seo D-H, Kim BH, Cho MG, Park J-H (2013) Science 340:964

    Article  CAS  PubMed  Google Scholar 

  28. Chen Y, Zheng H, Guo Z, Zhou C, Wang C, Borgna A, Yang Y (2011) J Catal 283:34

    Article  CAS  Google Scholar 

  29. Kato S, Ammann M, Huthwelker T, Paun C, Lampimäki M, Lee M-T, Rothensteiner M, van Bokhoven JA (2015) Phys Chem Chem Phys 17:5078

    Article  CAS  PubMed  Google Scholar 

  30. Torres JQ, Giraudon J-M, Lamonier J-F (2011) Catal Today 176:277

    Article  CAS  Google Scholar 

  31. An K, Alayoglu S, Musselwhite N, Plamthottam S, Melaet G, Lindeman AE, Somorjai GA (2013) J Am Chem Soc 135:16689

    Article  CAS  PubMed  Google Scholar 

  32. Liu H-H, Wang Y, Jia A-P, Wang S-Y, Luo M-F, Lu J-Q (2014) Appl Surf Sci 314:725

    Article  CAS  Google Scholar 

  33. Bera P, Gayen A, Hegde M, Lalla N, Spadaro L, Frusteri F, Arena F (2003) J Phys Chem B 107:6122

    Article  CAS  Google Scholar 

  34. Lee H, Nedrygailov II, Lee SW, Park JY (2018) Top Catal 61:915

    Article  CAS  Google Scholar 

  35. Lee H, Lim J, Lee C, Back S, An K, Shin JW, Ryoo R, Jung Y, Park JY (2018) Nat Commun 9:2235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Williams W, Marks C, Schmidt L (1992) J Phys Chem 96:5922

    Article  CAS  Google Scholar 

  37. Johnson GR, Bell AT (2016) J Catal 338:250

    Article  CAS  Google Scholar 

  38. Hervier A, Baker LR, Komvopoulos K, Somorjai GA (2011) J Phys Chem C 115:22960

    Article  CAS  Google Scholar 

  39. Phillips KR, Jensen SC, Baron M, Li S-C, Friend CM (2013) J Am Chem Soc 135:574

    Article  CAS  PubMed  Google Scholar 

  40. Wittstock A, Zielasek V, Biener J, Friend C, Bäumer M (2010) Science 327:319

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Institute for Basic Science (IBS) [IBS-R004]. D.-G. Lee and I. S. Lee acknowledge support from the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (MSIP) (Grant NRF-2016R1A3B1907559).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to In Su Lee or Jeong Young Park.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 511 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S.W., Lee, H., Lee, DG. et al. Facile Tuning of Metal/Oxide Interface in Hollow Nanoreactor Affecting Catalytic Activity and Selectivity. Catal Lett 149, 119–126 (2019). https://doi.org/10.1007/s10562-018-2600-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2600-4

Keywords

Navigation